

y

General definitions of the trigonometric operators:

$$sine(\theta) = sin(\theta) = \frac{y}{r}$$
 $cosecant(\theta) = csc(\theta) = \frac{r}{y}$

 $cosine(\theta) = cos(\theta) = \frac{x}{r}$ $secant(\theta) = sec(\theta) = \frac{r}{x}$

$$secant(\theta) = sec(\theta) = \frac{r}{x}$$

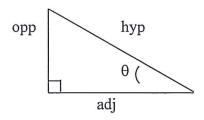
$$tangent(\theta) = tan(\theta) = \frac{y}{x}$$

$$tangent(\theta) = tan(\theta) = \frac{y}{x}$$
 $cotangent(\theta) = cot(\theta) = \frac{x}{y}$

Seventeen "nice" angles:

00	30°	45°	60°	90°	120°	135°	150°	180°	210 °	225°	240 °	270 °	300∘	315 0	330∘	360°
----	-----	-----	-----	-----	------	------	------	------	-------	------	-------	-------	------	-------	------	------

Right triangle definitions for the three, primary trigonometric operators:

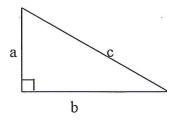


$$\sin(\theta) = \frac{\text{opp}}{\text{hyp}}$$

$$\cos(\theta) = \frac{adj}{hyp}$$

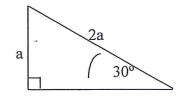
$$\tan(\theta) = \frac{\text{opp}}{\text{adj}}$$

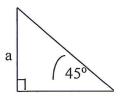
Pythagorean Theorem: Right triangles, only.



$$a^2 + b^2 = c^2$$

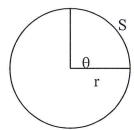
Special right triangles:





People did not invent mathematics. They discovered it and they keep on discovering more great truths of the universe.

Radian Measure:



 $S = r\theta$ where " θ " is a radian measure.

$$360^{\circ} = 2\pi$$

One radian is the angle subtended when one radius length is laid out on the circumference of a circle.

degrees	0°	30°	45°	60°	90°	120°	135°	150°	180°
radians	0	π/6	$\pi/4$	$\pi/3$	$\pi/2$	$2\pi/3$	$3\pi/4$	5π/6	π
sin θ	0	1/2	$1/\sqrt{2}$	$\sqrt{3}/2$	1	$\sqrt{3}/2$	$1/\sqrt{2}$	1/2	0
cos θ	1	$\sqrt{3}/2$	$1/\sqrt{2}$	1/2	0	-1/2	$-1/\sqrt{2}$	$-\sqrt{3}/2$	-1
tan θ	0	$1/\sqrt{3}$	1	$\sqrt{3}$	und.	$-\sqrt{3}$	-1	$-1/\sqrt{3}$	0

degrees	180°	210°	225°	240°	270°	300°	315°	330°	360°
radians	π	$7\pi/6$	5π/4	$4\pi/3$	$3\pi/2$	$5\pi/3$	$7\pi/4$	11π/6	2π
sin θ	0	-1/2	$-1/\sqrt{2}$	$-\sqrt{3}/2$	-1	$-\sqrt{3}/2$	$-1/\sqrt{2}$	-1/2	0
cos θ	-1	$-\sqrt{3}/2$	$-1/\sqrt{2}$	-1/2	0	1/2	$1/\sqrt{2}$	$\sqrt{3}/2$	1
tan θ	0	$1/\sqrt{3}$	1	$\sqrt{3}$	und.	$-\sqrt{3}$	-1	$-1/\sqrt{3}$	0

Basic Identities

$\sec \theta = \frac{1}{\cos \theta}$	$\cot \theta = \frac{\cos \theta}{\sin \theta}$
$\csc\theta = \frac{1}{\sin\theta}$	$\cos^2\theta + \sin^2\theta = 1$
$\cot \theta = \frac{1}{\tan \theta}$	$1 + \tan^2 \theta = \sec^2 \theta$
$\tan\theta = \frac{\sin\theta}{\cos\theta}$	$\cot^2\theta + 1 = \csc^2\theta$

"Knowing that something is wrong, but a person does it anyway; that person has committed a sin. In mathematics, find a new way to do something wrong -- at least that way a student can be awarded points for creativity."

Drake

"Do or do not. There is no try." Yoda

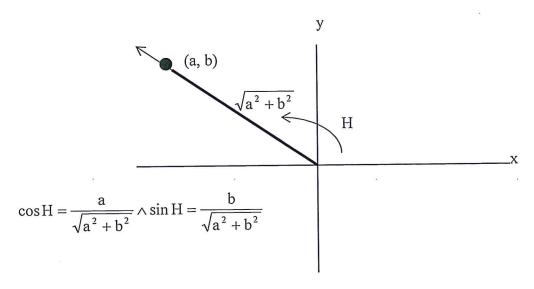
(8/28/2018) Page 10 of 12

More Identities That Everyone Knows

$\cos(A + B) = \cos A \cos B - \sin A \sin B$	$\sin(A+B) = \sin A \cos B + \sin B \cos A$
$\cos(A - B) = \cos A \cos B + \sin A \sin B$	$\sin(A - B) = \sin A \cos B - \sin B \cos A$
$\cos(2B) = \cos^2 B - \sin^2 B$	$\sin(2B) = 2\sin B\cos B$
$\cos(2B) = 2\cos^2 B - 1$	
$\cos(2B) = 1 - 2\sin^2 B$	
$\cos\left(\frac{\theta}{2}\right) = \operatorname{sgn}\left(\cos\left(\frac{\theta}{2}\right)\right)\sqrt{\frac{1+\cos\theta}{2}}$	
$\cos^2\theta = \frac{1+\cos(2\theta)}{2}$	$\sin^2\theta = \frac{1 - \cos(2\theta)}{2}$

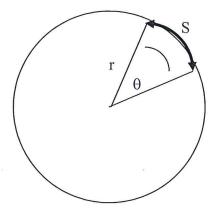
Be Aware of These Identities

Bollivarous	
$\sin A \cos B = \frac{1}{2} \left[\sin(A + B) + \sin(A - B) \right]$	$\sin C + \sin D = 2\sin\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$
$\cos A \sin B = \frac{1}{2} \left[\sin(A + B) - \sin(A - B) \right]$	$\sin C - \sin D = 2\cos\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right)$
$\cos A \cos B = \frac{1}{2} \left[\cos (A + B) + \cos (A - B) \right]$	$\cos C + \cos D = 2\cos\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$
$\sin A \sin B = \frac{1}{2} \left[\cos(A - B) - \cos(A + B) \right]$	$\cos C - \cos D = -2\sin\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right)$



$$\therefore a \sin \theta + b \cos \theta = \sqrt{a^2 + b^2} \sin(\theta + H)$$

Aren't Great Truths wonderful?



 $S = r\theta$ where " θ " is in radians.

$$\frac{S}{t} = r \left(\frac{\theta}{t} \right)$$
 where "t" is time.

$$\frac{S}{t} = v$$
 where "v" is linear velocity.

$$\frac{\theta}{t} = \omega$$
 where " ω " angular velocity in radians/time.

$$\therefore$$
 v = r ω

In calculus, we often use these modifide forms of the half – angle identities: $\sin^2 x = \frac{1 - \cos(2x)}{2}$ and $\cos^2 x = \frac{1 + \cos(2x)}{2}$.

The problem with political jokes is that they often get elected.

"Human mind and culture have developed a formal system of thought for recognizing, classifying, and exploiting patterns. We call it mathematics."

Ian Stewart Nature's Numbers

"Do not worry about your difficulties in Mathematics. I can assure you mine are still greater."

Albert Einstein

"Only the universe and human capacity for ignorance are infinite. I'm not so certain about the universe."

Albert Einstein